Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add filters








Language
Year range
1.
Experimental & Molecular Medicine ; : e58-2013.
Article in English | WPRIM | ID: wpr-209545

ABSTRACT

Salivary function in mammals may be defective for various reasons, such as aging, Sjogren's syndrome or radiation therapy in head and neck cancer patients. Recently, tissue-specific stem cell therapy has attracted public attention as a next-generation therapeutic reagent. In the present study, we isolated tissue-specific stem cells from the human submandibular salivary gland (hSGSCs). To efficiently isolate and amplify hSGSCs in large amounts, we developed a culture system (lasting 4-5 weeks) without any selection. After five passages, we obtained adherent cells that expressed mesenchymal stem cell surface antigen markers, such as CD44, CD49f, CD90 and CD105, but not the hematopoietic stem cell markers, CD34 and CD45, and that were able to undergo adipogenic, osteogenic and chondrogenic differentiation. In addition, hSGSCs were differentiated into amylase-expressing cells by using a two-step differentiation method. Transplantation of hSGSCs to radiation-damaged rat salivary glands rescued hyposalivation and body weight loss, restored acinar and duct cell structure, and decreased the amount of apoptotic cells. These data suggest that the isolated hSGSCs, which may have characteristics of mesenchymal-like stem cells, could be used as a cell therapy agent for the damaged salivary gland.


Subject(s)
Animals , Humans , Male , Rats , Amylases/genetics , Antigens, CD/genetics , Apoptosis , Cell Differentiation , Mesenchymal Stem Cells/cytology , Radiation Injuries, Experimental , Rats, Wistar , Regeneration , Salivary Glands/cytology , Salivation , Stem Cell Transplantation
2.
Braz. j. microbiol ; 42(4): 1364-1373, Oct.-Dec. 2011. ilus, tab
Article in English | LILACS | ID: lil-614597

ABSTRACT

Out of the vast pool of enzymes, proteolytic enzymes from microorganisms are the most widely used in different industries such as detergent, food, peptide production etc. Several marine microorganisms are known to produce proteases with commercially desirable characteristics. We have isolated nine different cultures from marine samples of the Indian Ocean. All of them were i) motile ii) rod shaped iii) non spore forming iv) catalase and amylase positive v) able to grow in presence of 10 percent NaCl. They produced acid from glucose, fructose and maltose and grew optimally at 30 0C temperature and pH 7.0-8.0. None of them could grow above 45 0C and below 15 0C. Only one of them (MBRI 7) exhibited extracellular protease activity on skim milk agar plates. Based on 16S rDNA sequencing, it belonged to the genus Marinobacter (98 percent sequence similarity, 1201 bp). The cell free extract was used to study effects of temperature and pH on protease activity. The optimum temperature and pH for activity were found to be 40 0C and 7.0 respectively. The crude enzyme was stable at temperature range of 30-80 0C and pH 5.0-9.0. It retained 60 percent activity at 80 0C after 4 h and more than 70 percent activity at 70 0C after 1 h. D value was found to be 342 minutes and 78 minutes for 40 0C and 80 0C respectively. Interestingly the enzyme remained 50 percent active at pH 9.0 after 1 h. Comparison with other proteases from different microbial sources indicated that the neutral protease from the halotolerant marine isolate MBRI 7 is a novel enzyme with high thermostability.


Subject(s)
Amylases/genetics , Amylases/isolation & purification , Catalase/analysis , Catalase/isolation & purification , Milk/enzymology , Marinobacter/genetics , Marinobacter/isolation & purification , Peptide Hydrolases/analysis , Sequence Analysis, DNA , Food Samples , Industrial Microbiology , Methods , Methods
3.
Experimental & Molecular Medicine ; : 379-384, 2003.
Article in English | WPRIM | ID: wpr-171363

ABSTRACT

Dexamethasone converts pluripotent pancreatic AR42J cells into exocrine cells expressing digestive enzymes. In order to address molecular mechanism of this differentiation, we have investigated the role of mitogen-activated protein (MAP) kinase pathway and gene expressions of p21(waf1/cip1)and nuclear oncogenes (c-fos and c-myc) during AR42J cell differentiation. Dexamethasone markedly increased the intracellular and secreted amylase contents as well as its mRNA level. However, cell growth and DNA content were significantly decreased. With these phenotypic changes, AR42J cells induced transient mRNA expression of p21(waf1/cip1)gene, which reached maximal level by 6 h and then declined gradually toward basal state. In contrast to p21(waf1/cip1), c-fos gene expression was transiently inhibited by 6 h and then recovered to basal level by 24 h. Increased c-myc expression detected after 3 h, peaked by 12 h, and remained elevated during the rest of observation. Dexamethasone inhibited epidermal growth factor-induced phosphorylation of extracellular signal regulated kinase. Inhibition of MAP kinase pathway by PD98059 resulted in further elevation of the dexamethasone-induced amylase mRNA and p21(waf1/cip1)gene expression. These results suggest that p21(waf1/cip1)and nuclear oncogenes are involved in dexamethasone-induced differentiation and inhibition of MAP kinase pathway accelerates the conversion of undifferentiated AR42J cells into amylase-secreting exocrine cells.


Subject(s)
Animals , Rats , Amylases/genetics , Cell Differentiation/drug effects , Cell Division/drug effects , Cell Line, Tumor , Cyclins/genetics , Dexamethasone/pharmacology , Gene Expression Regulation/drug effects , Genes, fos/genetics , Genes, myc/genetics , MAP Kinase Signaling System/drug effects , Mitogen-Activated Protein Kinases/metabolism , Pancreas/cytology , RNA, Messenger/genetics
SELECTION OF CITATIONS
SEARCH DETAIL